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ON THE STABILITY OF THE QUADRATIC-ADDITIVE
FUNCTIONAL EQUATION IN RANDOM NORMED

SPACES VIA FIXED POINT METHOD

Sun Sook Jin* and Yang-Hi Lee**

Abstract. In this paper, we prove the stability in random normed
spaces via fixed point method for the functional equation

f(x + y + z + w) + 2f(x) + 2f(y) + 2f(z) + 2f(w)− f(x + y)

−f(x + z)− f(x + w)− f(y + z)− f(y + w)− f(z + w) = 0.

1. Introduction

In 1940, S. M. Ulam [26] raised a question concerning the stability of
homomorphisms: Given a group G1, a metric group G2 with the metric
d(·, ·), and a positive number ε, does there exist a δ > 0 such that if a
mapping f : G1 → G2 satisfies the inequality

d(f(xy), f(x)f(y)) < δ

for all x, y ∈ G1 then there exists a homomorphism F : G1 → G2 with

d(f(x), F (x)) < ε

for all x ∈ G1? As mentioned above, when this problem has a solution,
we say that the homomorphisms from G1 to G2 are stable. In 1941,
D. H. Hyers [5] gave a partial solution of Ulam’s problem for the case
of approximate additive mappings under the assumption that G1 and
G2 are Banach spaces. Hyers’ result was generalized by T. Aoki [1]
for additive mappings and Th. M. Rassias [22] for linear mappings by
considering the stability problem with unbounded Cauchy differences.
During the last decades, the stability problems of functional equations
have been extensively investigated by a number of mathematicians, see
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[3], [4], [7]-[18].
Recall, almost all subsequent proofs in this very active area have used

Hyers’ method, called a direct method. Namely, the function F , which is
the solution of a functional equation, is explicitly constructed, starting
from the given function f , by the formulae F (x) = limn→∞ 1

2n f(2nx)
or F (x) = limn→∞ 2nf( x

2n ). In 2003, V. Radu [21] observed that the
existence of the solution F of a functional equation and the estimation
of the difference with the given function f can be obtained from the
fixed point alternative. In 2008, D. Mihet and V. Radu [20] applied
this method to prove the stability theorems of the Cauchy functional
equation:

(1.1) f(x + y)− f(x)− f(y) = 0

in random normed spaces. We call solutions of (1.1) additive mappings.
In 2004, Chang et al [2] established the general solution and investi-

gated the stability of the quadratic-additive functional equation:

f(x + y + z + w) + 2f(x) + 2f(y) + 2f(z) + 2f(w)− f(x + y)
−f(x + z)− f(x + w)− f(y + z)− f(y + w)− f(z + w) = 0(1.2)

by using a direct method. Now, we consider the functional equation:

f(x + y + z +w) + 2f(x) + 2f(y) + 2f(z) + 2f(w)− f(x + y)
−f(x + z)− f(x + w)− f(y + z)− f(y + w)− f(z + w)
−3f(0) = 0(1.3)

which is called the general quadratic functional equation. In this paper,
using the fixed point method, we prove the stability for the functional
equation (1.2) and the general quadratic functional equation (1.3) in
random normed spaces. It is easy to see that the mappings f(x) =
ax2 +bx and f(x) = ax2 +bx+c are solutions of the functional equation
(1.2) and (1.3), respectively. Every solution of the quadratic-additive
functional equation (1.2) and the general quadratic functional equation
(1.3) are said to be a quadratic-additive mapping and a general quadratic
mapping, respectively.

2. Preliminaries

In this section, we state the usual terminology, notations and conven-
tions of the theory of random normed spaces, as in [24,25]. Firstly, the
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space of all probability distribution functions is denoted by

∆+ := {F : R ∪ {−∞,∞} → [0, 1]
∣∣F is left-continuous

and nondecreasing on R, where F (0) = 0 and F (+∞) = 1}.
And let the subset D+ ⊆ ∆+ be the set D+ := {F ∈ ∆+|l−F (+∞) = 1},
where l−f(x) denotes the left limit of the function f at the point x.
The space ∆+ is partially ordered by the usual pointwise ordering of
functions, that is, F ≤ G if and only if F (t) ≤ G(t) for all t ∈ R.
The maximal element for ∆+ in this order is the distribution function
ε0 : R ∪ {0} → [0,∞) given by

ε0(t) =
{

0 if t ≤ 0,
1 if t > 0.

Definition 2.1. ([24]) A mapping τ : [0, 1]× [0, 1] → [0, 1] is called a
continuous triangular norm (briefly, a continuous t-norm) if τ satisfies
the following conditions:
(a) τ is commutative and associative;
(b) τ is continuous;
(c) τ(a, 1) = a for all a ∈ [0, 1];
(d) τ(a, b) ≤ τ(c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norms are τP (a, b) = ab, τM (a, b) =
min(a, b) and τL(a, b) = max(a + b− 1, 0).

Definition 2.2. ([25]) A random normed space (briefly, RN-space)
is a triple (X, Λ, τ), where X is a vector space, τ is a continuous t-norm,
and Λ is a mapping from X into D+ such that the following conditions
hold:
(RN1) Λx(t) = ε0(t) for all t > 0 if and only if x = 0,
(RN2) Λαx(t) = Λx(t/|α|) for all x in X, α 6= 0 and all t ≥ 0,
(RN3) Λx+y(t + s) ≥ τ(Λx(t), Λy(s)) for all x, y ∈ X and all t, s ≥ 0.

If (X, ‖ · ‖) is a normed space, we can define a mapping Λ : X → D+

by

Λx(t) =
t

t + ‖x‖
for all x ∈ X and t > 0. Then (X, Λ, τM ) is a random normed space,
which is called the induced random normed space.

Definition 2.3. Let (X, Λ, τ) be an RN -space.
(i) A sequence {xn} in X is said to be convergent to a point x ∈ X if,
for every t > 0 and ε > 0, there exists a positive integer N such that
Λxn−x(t) > 1− ε whenever n ≥ N .
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(ii) A sequence {xn} in X is called a Cauchy sequence if, for every t > 0
and ε > 0, there exists a positive integer N such that Λxn−xm(t) > 1− ε
whenever n ≥ m ≥ N .
(iii) An RN-space (X, Λ, τ) is said to be complete if and only if every
Cauchy sequence in X is convergent to a point in X.

Theorem 2.4. ([24]) If (X, Λ, τ) is an RN-space and {xn} is a se-
quence such that xn → x, then limn→∞ Λxn(t) = Λx(t).

3. On the stability of the quadratic-additive functional equa-
tion in RN-spaces

We recall the fundamental result in the fixed point theory.

Theorem 3.1. ([19] or [23]) Suppose that a complete generalized
metric space (X, d), which means that the metric d may assume infinite
values, and a strictly contractive mapping J : X → X with the Lips-
chitz constant 0 < L < 1 are given. Then, for each given element x ∈ X,
either

d(Jnx, Jn+1x) = +∞, ∀n ∈ N ∪ {0},
or there exists a nonnegative integer k such that:
(1) d(Jnx, Jn+1x) < +∞ for all n ≥ k;
(2) the sequence {Jnx} is convergent to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in Y := {y ∈ X, d(Jkx, y) < +∞};
(4) d(y, y∗) ≤ (1/(1− L))d(y, Jy) for all y ∈ Y.

Let X and Y be vector spaces. We use the following abbreviations
for a given mapping f : X → Y by

Df(x, y, z, w)
:= f(x + y + z + w) + 2f(x) + 2f(y) + 2f(z) + 2f(w)

−f(x + y)− f(x + z)− f(x + w)− f(y + z)− f(y + w)
−f(z + w),

D′f(x, y, z, w)
:= f(x + y + z + w) + 2f(x) + 2f(y) + 2f(z) + 2f(w)

−f(x + y)− f(x + z)− f(x + w)− f(y + z)− f(y + w)
−f(z + w)− 3f(0)

for all x, y, z, w ∈ X.
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Lemma 3.2. ([6]) If f : X → Y is a mapping such that Df(x, y, z, w)
= 0 for all x, y, z, w ∈ X\{0}, then f is a quadratic-additive mapping.

Now we will establish the stability for the functional equation (1.2)
in random normed spaces via fixed point method.

Theorem 3.3. Let X be a linear space, (Z, Λ′, τM ) be an RN-space,
(Y, Λ, τM ) be a complete RN-space and f : X → Y be a mapping for
which there is ϕ : (X\{0})4 → Z such that

(3.1) ΛDf(x,y,z,w)(t) ≥ Λ′ϕ(x,y,z,w)(t)

for all x, y, z, w ∈ X\{0} and t > 0. If for all x, y, z, w ∈ X\{0} and
t > 0 ϕ satisfies one of the following conditions:
(i) Λ′αϕ(x,y,z,w)(t) ≤ Λ′ϕ(2x,2y,2z,2w)(t) ≤ Λ′α′ϕ(x,y,z,w)(t) for some 1 <

α′ ≤ α < 2,
(ii) Λ′αϕ(x,y,z,w)(t) ≤ Λ′ϕ(2x,2y,2z,2w)(t) for some 0 < α < 1,

(iii) Λ′ϕ(2x,2y,2z,2w)(t) ≤ Λ′αϕ(x,y,z,w)(t) for some 4 < α

then there exists a unique quadratic-additive mapping F : X → Y such
that

(3.2) Λf(x)−F (x)(t) ≥
{

M(x, 2(2− α)t) if ϕ satisfies (i) or (ii),
M(x, 2(α− 4)t) if ϕ satisfies (iii)

for all x ∈ X and t > 0, where

M(x, t) := τM

{
Λ′ϕ(x,x,x,−x)(t), Λ

′
ϕ(−x,−x,−x,x)(t)

}
.

Moreover Λ′ϕ(x,y,z,w) is continuous in x,y,z,w under the condition (ii),
then f is a quadratic-additive mapping.

Proof. Notice that

f(0) =
1
3
(
Df(x, x, x, x) + Df(−x,−x,−x,−x)

+Df(2x, 2x,−2x,−2x)− 2Df(x, x,−x,−x)
)

(3.3)

for any x ∈ X\{0}. We will prove the theorem in three cases, ϕ satisfies
one of the conditions (i), (ii) or (iii).
Case 1. Assume that ϕ satisfies the condition (i). Choose a fixed
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x ∈ X\{0}, then it follows from (3.1), (3.3), (RN2), and (RN3) that

Λf(0)(5t) ≥ τM

{
Λ 1

3
Df( x

2n , x
2n , x

2n , x
2n ) (t) ,Λ 1

3
Df(− x

2n ,− x
2n ,− x

2n ,− x
2n ) (t) ,

Λ 1
3
Df( 2x

2n , 2x
2n ,− 2x

2n ,− 2x
2n )(t),Λ 2

3
Df( x

2n , x
2n ,− x

2n ,− x
2n )(2t)

}

= τM

{
ΛDf( x

2n , x
2n , x

2n , x
2n ) (3t) ,ΛDf(− x

2n ,− x
2n ,− x

2n ,− x
2n ) (3t) ,

ΛDf( 2x
2n , 2x

2n ,− 2x
2n ,− 2x

2n )(3t),ΛDf( x
2n , x

2n ,− x
2n ,− x

2n )(3t)
}

≥ τM

{
Λ′ϕ( x

2n , x
2n , x

2n , x
2n ) (3t) ,Λ′ϕ(− x

2n ,− x
2n ,− x

2n ,− x
2n ) (3t) ,

Λ′
ϕ( 2x

2n , 2x
2n ,− 2x

2n ,− 2x
2n )

(3t),Λ′ϕ( x
2n , x

2n ,− x
2n ,− x

2n ) (3t)
}

≥ τM

{
Λ′ 1

α′n ϕ(x,x,x,x)
(3t) , Λ′ 1

α′n ϕ(−x,−x,−x,−x)
(3t) ,

Λ′ 1
α′n ϕ(2x,2x,−2x,−2x

(3t), Λ′ 1
α′n ϕ(x,x,−x,−x)

(3t)
}

≥ τM

{
Λ′ϕ(x,x,x,x)

(
3α′nt

)
, Λ′ϕ(−x,−x,−x,−x)

(
3α′nt

)
,

Λ′ϕ(2x,2x,−2x,−2x(3α′nt),Λ′ϕ(x,x,−x,−x)

(
3α′nt

)}

for all t > 0 and n ∈ N. Since all terms on the right hand side of the
above inequality tend to 1 as n →∞, we have f(0) = 0 by (RN1). Let
S be the set of all functions g : X → Y with g(0) = 0 and introduce a
generalized metric on S by

d(g, h) := inf
{
u ∈ R+

∣∣Λg(x)−h(x)(ut) ≥ M(x, t) for all x ∈ X \ {0}} .

Consider the mapping J : S → S defined by

Jf(x) :=
f(2x)− f(−2x)

4
+

f(2x) + f(−2x)
8

,

then we have

Jnf(x) =
1
2

(
4−n (f(2nx) + f(−2nx)) + 2−n (f(2nx)− f(−2nx))

)

for all x ∈ X and n ∈ N. Let f, g ∈ S and let u ∈ [0,∞] be an arbitrary
constant with d(g, f) ≤ u. From the definition of d, (RN2), and (RN3),
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for the given 0 < α < 2 we have

ΛJg(x)−Jf(x)

(αu

2
t
)

= Λ 3(g(2x)−f(2x))
8

− g(−2x)−f(−2x)
8

(αu

2
t
)

≥ τM

{
Λ 3(g(2x)−f(2x))

8

(
3αut

8

)
, Λ g(−2x)−f(−2x)

8

(
αut

8

)}

≥ τM

{
Λg(2x)−f(2x)(αut), Λg(−2x)−f(−2x) (αut)

}

≥ τM

{
Λ′ϕ(2x,2x,2x,−2x)(αt), Λ′ϕ(−2x,−2x,−2x,2x)(αt)

}

≥ M(x, t)

for all x ∈ X\{0}, which implies that

d(Jf, Jg) ≤ α

2
d(f, g).

That is, J is a strictly contractive self-mapping of S with the Lipschitz
constant 0 < α

2 < 1. It is clear that

f(x)− Jf(x) =
3Df(x, x, x,−x)

16
− Df(−x,−x,−x, x)

16

for all x ∈ X\{0}. Moreover, by (3.1), we see that

Λf(x)−Jf(x)

(
t

4

)
= Λ 3Df(x,x,x,−x)

16
−Df(−x,−x,−x,x)

16

(
t

4

)

≥ τM

{
Λ 3Df(x,x,x,−x)

16

(
3t

16

)
, ΛDf(−x,−x,−x,x)

16

(
t

16

)}

≥ τM

{
ΛDf(x,x,x,−x)(t),ΛDf(−x,−x,−x,x)(t)

}

≥ τM

{
Λ′ϕ(x,x,x,−x)(t),Λ

′
ϕ(−x,−x,−x,x)(t)

}

for all x ∈ X\{0}. It means that d(f, Jf) ≤ 1
4 < ∞ by the definition of

d. Therefore according to Theorem 3.1, the sequence {Jnf} converges
to the unique fixed point F : X → Y of J in the set T = {g ∈ S|d(f, g) <
∞}, which is represented by

F (x) := lim
n→∞

(
f(2nx) + f(−2nx)

2 · 4n
+

f(2nx)− f(−2nx)
2n+1

)

for all x ∈ X. Since

d(f, F ) ≤ 1
1− α

2

d(f, Jf) ≤ 1
2(2− α)
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the inequality (3.2) holds. Next we will show that F is a quadratic-
additive mapping. Let x, y, z, w ∈ X. Then by (RN3) we have

ΛDF (x,y,z,w)(t) ≥ τM

{
Λ(F−Jnf)(x+y+z+w)

(
t

30

)
, Λ2(F−Jnf)(x)

(
t

15

)
,

Λ2(F−Jnf)(y)

(
t

15

)
,Λ2(F−Jnf)(z)

(
t

15

)
,

Λ2(F−Jnf)(w)

(
t

15

)
,Λ(F−Jnf)(x+y)

(
t

30

)
,

Λ(F−Jnf)(x+z)

(
t

30

)
, Λ(F−Jnf)(x+w)

(
t

30

)
,

Λ(F−Jnf)(y+z)

(
t

30

)
, Λ(F−Jnf)(y+w)

(
t

30

)
,

Λ(F−Jnf)(z+w)

(
t

30

)
, ΛDJnf(x,y,z,w)

(
t

2

)}
(3.4)

for all x, y, z, w ∈ X\{0} and n ∈ N. The first eleven terms on the right
hand side of the above inequality tend to 1 as n →∞ by the definition
of F . Now consider that

ΛDJnf(x,y,z,w)

(
t

2

)

≥ τM

{
ΛDf(2nx,2ny,2nz,2nw)

2·4n

(
t

8

)
, ΛDf(−2nx,−2ny,−2nz,−2nw)

2·4n

(
t

8

)
,

ΛDf(2nx,2ny,2nz,2nw)
2·2n

(
t

8

)
, ΛDf(−2nx,−2ny,−2nz,−2nw)

2·2n

(
t

8

)}

≥ τM

{
ΛDf(2nx,2ny,2nz,2nw)

(
4nt

4

)
,ΛDf(−2nx,−2ny,−2nz,−2nw)

(
4nt

4

)
,

ΛDf(2nx,2ny,2nz,2nw)

(
2nt

4

)
, ΛDf(−2nx,−2ny,−2nz,−2nw)

(
2nt

4

)}

≥ τM

{
Λ′ϕ(x,y,z,w)

(
4nt

4αn

)
, Λ′ϕ(−x,−y,−z,−w)

(
4nt

4αn

)
,

Λ′ϕ(x,y,z,w)

(
2nt

4αn

)
, Λ′ϕ(−x,−y,−z,−w)

(
2nt

4αn

) }

which tends to 1 as n → ∞ by (RN3) and 2
α > 1 for all x, y, z, w ∈

X\{0}. Therefore it follows from (3.4) that

ΛDF (x,y,z,w)(t) = 1
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for each x, y, z, w ∈ X\{0} and t > 0. By (RN1) and Lemma 3.2, this
means that DF (x, y, z, w) = 0 for all x, y, z, w ∈ X.
Case 2. Assume that ϕ satisfies the condition (ii). It follows from
(3.1), (3.3), (RN2), and (RN3) that

Λf(0)(5t)

≥ τM

{
Λ 1

3
Df(2nx,2nx,2nx,2nx) (t) ,Λ 1

3
Df(−2nx,−2nx,−2nx,−2nx) (t) ,

Λ 1
3
Df(2n+1x,2n+1x,−2n+1x,−2n+1x)(t),Λ 2

3
Df(2nx,2nx,−2nx,−2nx)(2t)

}

≥ τM

{
Λ′αnϕ(x,x,x,x) (3t) , Λ′αnϕ(−x,−x,−x,−x) (3t) ,

Λ′αnϕ(2x,2x,−2x,−2x(3t),Λ′αnϕ(x,x,−x,−x) (3t)
}

≥ τM

{
Λ′ϕ(x,x,x,x)

(
3t

αn

)
, Λ′ϕ(−x,−x,−x,−x)

(
3t

αn

)
,

Λ′ϕ(2x,2x,−2x,−2x(
3t

αn
), Λ′ϕ(x,x,−x,−x)

(
3t

αn

)}

for a fixed x ∈ X\{0}, t > 0, and for all n ∈ N. Since all terms on
the last side of the above inequality tend to 1 as n → ∞, we have
f(0) = 0 by (RN1). The rest proof of this case is same as that of Case
1. In particular, assume that Λ′ϕ(x,y,z,w) is continuous in x, y, z, w. If
m, a1, b1, a2, b2, a3, b3, a4, b4 are any fixed integers with a1, a2, a3, a4 6= 0,
then we have

lim
n→∞Λ′ϕ((2na1+b1)x,(2na2+b2)y,(2na3+b3)z,(2na4+b4)w)(t)

≥ lim
n→∞Λ′

ϕ
((

a1+
b1
2n

)
x,

(
a2+

b2
2n

)
y,

(
a3+

b3
2n

)
z,

(
a4+

b4
2n

)
w

)
(

t

αn

)

≥ lim
n→∞Λ′

ϕ
((

a1+
b1
2n

)
x,

(
a2+

b2
2n

)
y,

(
a3+

b3
2n

)
z,

(
a4+

b4
2n

)
w

)(mt)

= Λ′ϕ(a1x,a2y,a3z,a4w)(mt)

for all x, y, z, w ∈ X\{0} and t > 0. Since m is arbitrary, we have

lim
n→∞Λ′ϕ((2na1+b1)x,(2na2+b2)y,(2na3+b3)z,(2na4+b4)w)(t)

≥ lim
m→∞Λ′ϕ(a1x,a2y,a3z,a4w)(mt) = 1
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for all x, y, z, w ∈ X\{0} and t > 0. From these, we get the inequality

Λ3(F (x)−f(x))(13t)

≥ lim
n→∞ τM

{
Λ(Df−DF )((2n+1)x,−2nx,−2nx,−2nx)(t),

Λ(F−f)((−2n+1+1)x)(t), Λ3(f−F )(−2n+1x)(3t),

Λ6(F−f)(−2nx)(6t), Λ2(F−f)((2n+1)x)(2t)
}

≥ lim
n→∞ τM

{
Λ′ϕ((2n+1)x,−2nx,−2nx,−2nx)(t),

M((1− 2n+1)x, 2(2− α)t),M
(
2n+1x, 2(2− α)t

)
,

M((2n + 1)x, 2(2− α)t),M (2nx, 2(2− α)t)
}

= 1

for all x ∈ X \ {0}. From the above equality and the fact f(0) = 0 =
F (0), we obtain f ≡ F .
Case 3. Assume that ϕ satisfies the condition (iii). One can show
that f(0) = 0 by the same method used in Case 1. Let the set (S, d)
be as in the proof of Case 1. Now we consider the mapping J : S → S
defined by

Jg(x) := g
(x

2

)
− g

(
−x

2

)
+ 2

(
g

(x

2

)
+ g

(
−x

2

))

for all g ∈ S and x ∈ V . Notice that

Jng(x) = 2n−1
(
g

( x

2n

)
− g

(
− x

2n

))
+

4n

2

(
g

( x

2n

)
+ g

(
− x

2n

))

for all x ∈ X. Let f, g ∈ S and let u ∈ [0,∞] be an arbitrary constant
with d(g, f) ≤ u. From the definition of d, (RN2), and (RN3), we have

ΛJg(x)−Jf(x)

(
4u

α
t

)
= Λ3(g(x

2
)−f(x

2
))+g(−x

2
)−f(−x

2
)

(
4u

α
t

)

≥ τM

{
Λ3(g(x

2
)−f(x

2
))

(
3u

α
t

)
, Λg(−x

2
)−f(−x

2
)

(u

α
t
)}

≥ τM

{
Λg(x

2
)−f(x

2
)

(u

α
t
)

,Λg(−x
2
)−f(−x

2
)

(u

α
t
)}

≥ τM

{
Λ′ϕ(x

2
, x
2
, x
2
,−x

2
)

(
t

α

)
,Λ′ϕ(−x

2
,−x

2
,−x

2
, x
2
)

(
t

α

)}

≥ M(x, t)

for all x ∈ X\{0}, which implies that

d(Jf, Jg) ≤ 4
α

d(f, g).
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That is, J is a strictly contractive self-mapping of S with the Lipschitz
constant 0 < 4

α < 1. Moreover, by (3.1), we see that

Λf(x)−Jf(x)

(
t

2α

)
= Λ− 1

2
Df(x

2
, x
2
, x
2
,−x

2
)

(
t

2α

)

= ΛDf(x
2
, x
2
, x
2
,−x

2
)

(
t

α

)

≥ Λ′ϕ(x
2
, x
2
, x
2
,−x

2
)

(
t

α

)

≥ Λ′ϕ(x,x,x,−x)(t)

for all x ∈ X\{0}. It means that d(f, Jf) ≤ 1
2α < ∞ by the definition of

d. Therefore according to Theorem 3.1, the sequence {Jnf} converges
to the unique fixed point F : X → Y of J in the set T = {g ∈ S|d(f, g) <
∞}, which is represented by

F (x) := lim
n→∞

(
2n−1

(
f

( x

2n

)
− f

(
− x

2n

))
+

4n

2

(
f

( x

2n

)
+ f

(
− x

2n

)))

for all x ∈ X. Since

d(f, F ) ≤ 1
1− 4

α

d(f, Jf) ≤ 1
2(α− 4)

the inequality (3.2) holds. Next we will show that F is quadratic-
additive. Let x, y, z, w ∈ X. Then by (RN3) we have the inequality
(3.4) for all x, y, z, w ∈ X\{0} and n ∈ N. The first eleven terms on
the right hand side of the inequality (3.4) tend to 1 as n → ∞ by the
definition of F . Now consider that

ΛDJnf(x,y,z,w)

(
t

2

)

≥ τM

{
Λ22n−1Df( x

2n , y
2n , z

2n , w
2n )

(
t

8

)
, Λ22n−1Df(−x

2n ,−y
2n ,−z

2n ,−w
2n )

(
t

8

)
,

Λ2n−1Df( x
2n , y

2n , z
2n , w

2n )

(
t

8

)
, Λ−2n−1Df(−x

2n ,−y
2n ,−z

2n ,−w
2n )

(
t

8

)}

≥ τM

{
Λ′ϕ(x,y,z,w)

(
αnt

4n+1

)
, Λ′ϕ(−x,−y,−z,−w)

(
αnt

4n+1

)
,

Λ′ϕ(x,y,z,w)

(
αnt

2n+2

)
, Λ′ϕ(−x,−y,−z,−w)

(
αnt

2n+2

) }
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which tends to 1 as n →∞ by (RN3) for all x, y, z, w ∈ X\{0}. There-
fore it follows from (3.4) that

ΛDF (x,y,z,w)(t) = 1

for each x, y, z, w ∈ X\{0} and t > 0. By (RN1) and Lemma 3.2, this
means that DF (x, y, z, w) = 0 for all x, y, z, w ∈ X. It completes the
proof of Theorem 3.3.

Now we will establish the stability for the functional equation (1.3)
in random normed spaces.

Theorem 3.4. Let X, (Z, Λ′, τM ), (Y, Λ, τM ), ϕ and M(x, t) be as in
Theorem 3.3. If f : X → Y is a mapping such that

(3.5) ΛD′f(x,y,z,w)(t) ≥ Λ′ϕ(x,y,z,w)(t)

for all x, y, z, w ∈ X\{0} and t > 0, then there exists a unique general
quadratic mapping F : X → Y satisfying (3.2) for all x ∈ X\{0} and
t > 0.

Proof. Let f̃ = f − f(0). Then by (3.5) we have

ΛDf̃(x,y,z,w)(t) = ΛD′f(x,y,z,w)(t) ≥ Λ′ϕ(x,y,z,w)(t)

for all x, y, z, w ∈ X\{0} and t > 0 with f̃(0) = 0. By Theorem 3.3,
there exists a unique mapping F ′ : X → Y satisfying (3.2) for f̃ and
DF ′(x, y, z, w) = 0. Put F = F ′ + f(0), then we easily show that
D′F (x, y, z, w) = 0 and F satisfying (3.2) for f .

Now we have the generalized Hyers-Ulam stability of the quadratic-
additive functional equation (1.2) in the framework of normed spaces.
Let Λx(t) = t

t+‖x‖ . Then (X, Λ, τM ) is an induced random normed space,
which leads us to get the following result.

Corollary 3.5. Let X be a linear space and Y a complete normed-
space. And let f : X → Y be a mapping for which there is ϕ :
(X\{0})4 → [0,∞) such that

‖Df(x, y, z, w)‖ ≤ ϕ(x, y, z, w)

for all x, y, z, w ∈ X\{0}. If, for all x, y, z, w ∈ X\{0}, ϕ satisfies one of
the following conditions:
(i) αϕ(x, y, z, w) ≥ ϕ(2x, 2y, 2z, 2w) ≥ α′ϕ(x, y, z, w) for some 1 < α′ ≤
α < 2,
(ii) αϕ(x, y, z, w) ≥ ϕ(2x, 2y, 2z, 2w) for some 0 < α < 1,
(iii) ϕ(2x, 2y, 2z, 2w) ≥ αϕ(x, y, z, w) for some 4 < α,
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then there exists a unique quadratic-additive mapping F : X → Y such
that

‖f(x)− F (x)‖ ≤
{

Φ(x)
2(2−α) if ϕ satisfies (i) or (ii),
Φ(x)

2(α−4) if ϕ satisfies (iii)

for all x ∈ X, where Φ(x) is defined by

Φ(x) = max
{

ϕ(x, x, x,−x), ϕ(−x,−x,−x, x)
}

.

Moreover, if ϕ is continuous under the condition (ii), then f is a quadratic-
additive mapping.

Now we have the Hyers-Ulam-Rassias stability of the quadratic-additive
functional equation (1.2) in the framework of normed spaces.

Corollary 3.6. Let X be a normed space, p ∈ (−∞, 0) ∪ (0, 1) ∪
(2,∞) and Y a complete normed-space. If f : X → Y is a mapping such
that

‖Df(x, y, z, w)‖ ≤ ‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p

for all x, y, z, w ∈ X\{0}, then there exists a unique quadratic-additive
mapping F : X → Y such that

‖f(x)− F (x)‖ ≤
{

2‖x‖p

2−2p if 0 < p < 1,
2‖x‖p

2p−4 if p > 2

for all x ∈ X\{0} and f is itself a quadratic-additive mapping if p < 0.

Proof. If we denote by ϕ(x, y, z, w) = ‖x‖p +‖y‖p +‖z‖p +‖w‖p, then
the induced random normed space (X, Λx, τM ) holds the conditions of
Theorem 3.3 with α = 2p.

Corollary 3.7. Let X, Y , and ϕ be as in Corollary 3.5. If f : X →
Y is a mapping such that

‖D′f(x, y, z, w)‖ ≤ ϕ(x, y, z, w)

for all x, y, z, w ∈ X\{0}, then there exists a unique general quadratic
mapping F : X → Y satisfying (3.6).

Now we have the Hyers-Ulam-Rassias stability of the general qua-
dratic functional equation (1.3).

Corollary 3.8. Let X be a normed space, p ∈ (−∞, 0) ∪ (0, 1) ∪
(2,∞) and Y a complete normed-space. If f : X → Y is a mapping such
that

‖D′f(x, y, z, w)‖ ≤ ‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p
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for all x, y, z, w ∈ X\{0}, then there exists a unique general-quadratic
mapping F : X → Y satisfying (3.7) if p(0, 1) ∪ (2,∞) and f is itself a
general quadratic mapping if p < 0.
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